Recombination Pathways in Green InGaN/GaN Multiple Quantum Wells
نویسندگان
چکیده
This paper reports the transient photoluminescence (PL) properties of an InGaN/GaN multiple quantum well (MQW) light-emitting diode (LED) with green emission. Recombination of localized excitons was proved to be the main microscopic mechanism of green emission in the sample. The PL dynamics were ascribed to two pathways of the exciton recombination, corresponding to the fast decay and the slow decay, respectively. The origins of slow decay and fast decay were assigned to local compositional fluctuations of indium and thickness variations of InGaN layers, respectively. Furthermore, the contributions of two decay pathways to the green PL were found to vary at different emission photon energy. The fraction of fast decay pathway decreased with decreasing photon energy. The slow radiative PL from deep localized exciton recombination suffered less suppression from non-radiative delocalization process, for the higher requested activation energy. All these results supported a clear microscopy mechanism of excitation-emission process of the green MQW LED structure.
منابع مشابه
Effects of reduced exciton diffusion in InGaN/GaN multiple quantum well nanorods.
We investigate the effects of reduced exciton diffusion on the emission properties in InGaN/GaN multiple-quantum-well nanorods. Time-resolved photoluminescence spectra are recorded and compared in dry-etched InGaN/GaN nanorods and parent multiple quantum wells at various temperatures with carrier density in different regimes. Faster carrier recombination and absence of delayed rise in the emiss...
متن کاملRecombination Dynamics in GaN and InGaN / GaN Multiple Quantum Wells on Air・bridged Lateral
متن کامل
Photoluminescence microscopy of InGaN quantum wells
Submicron spatial resolution photoluminescence is used to assess radiative efficiency and spatial uniformity of GaN/InGaN heterojunctions. Room temperature photoluminescence of multiple InGaN quantum wells with GaN barriers fabricated by electron-cyclotron resonance assisted molecular beam epitaxy was measured as a function of position on a facet perpendicular to the layer structure. Our high r...
متن کاملBlue–green–red LEDs based on InGaN quantum dots grown by plasma-assisted molecular beam epitaxy
Self-assembled InGaN quantum dots were grown in the Stranski–Krastanov mode by plasma-assisted molecular beam epitaxy. The average dot height, diameter and density are 3 nm, 30 nm and 7 × 1010 cm–2, respectively. The dot density was found to decrease as the growth temperature increases. The cathodoluminescence emission peak of the InGaN/GaN multiple layer quantum dots (MQDs) was found to red sh...
متن کاملINFLUENCE OF Si-DOPING ON CARRIER LOCALIZATION OF MOCVD-GROWN InGaN/GaN MULTIPLE QUANTUM WELLS
We have systematically studied the influence of Si doping on the optical characteristics of InGaN/GaN multiple quantum wells (MQWs) using photoluminescence (PL), PL excitation (PLE), and time-resolved PL spectroscopy combined with studies of optically pumped stimulated emission and structural properties from these materials. The MQWs were grown on 1.8-μm-thick GaN layers on c-plane sapphire fil...
متن کامل